PROC REPORT: Tips and Customizations for Quickly Creating Customized Reports

Jonathan Duggins, NC State University
James Blum, UNCW

SESUG Paper 084-2021

Outline

- Begin with comparison to PRINT
- Start with fundamental REPORT syntax & effects
- Explore each of the six possible usages
- End with peek at more fully-fledged report

Simple PROC PRINT

```
proc print data = SasHelp.Cars(obs = 5);
  var Type MPG_City MPG_Highway;
run;
```

Obs	Туре	MPG_City	MPG_Highway
1	SUV	17	23
2	Sedan	24	31
3	Sedan	22	29
4	Sedan	20	28
5	Sedan	18	24

Modifying our PROC PRINT

```
proc print data = SasHelp.Cars(obs = 5);
  var ① MPG_City MPG_Highway;
run;
```

Obs	MPG_City	MPG_Highway
1	17	23
2	24	31
3	22	29
4	20	28
5	18	24

Reproducing Print #1 with REPORT

```
proc report data = SasHelp.Cars(obs = 5); 1
    column Type MPG_City MPG_Highway; 2
run;
```

Туре	MPG (City)	MPG (Highway)
SUV	17	23
Sedan	24	31
Sedan	22	29
Sedan	20	28
Sedan	18	24

Reproducing Print #2 with REPORT

```
proc report data = SasHelp.Cars(obs = 5);
  columns ① MPG_City MPG_Highway;
run;
```

MPG (City)	MPG (Highway)
101	135

Default Usages

Properties 1

DISPLAY:

- Each observation printed in its own row
- Default for character variables from data set

ANALYSIS:

- Calculates statistic for group of observations from data set.
 - Only ANALYSIS variables \Rightarrow group \equiv records in the report.
 - Default statistic is SUM.
- Default for numeric variables from data set.

Adding Explicit Usages

```
proc report data = SasHelp.Cars(obs = 5);
  column Type MPG_City MPG_Highway;
  define Type ① / display; ②
  define MPG_City / display; ②
  define MPG_Highway / display; ②
run;
```

Туре	MPG (City)	MPG (Highway)
SUV	17	23
Sedan	24	31
Sedan	22	29
Sedan	20	28
Sedan	18	24

Usage GPP: Include DEFINE with Explicit Usage

MPG (City)	MPG (Highway)
17	23
24	31
22	29
20	28
18	24

Aside: Building a Format

- Create mpg format for MPG_City and MPG_Highway variables
- Designed so formatted order is not the same as internal order!

Additional Options: ID, FORMAT, Labels, NOPRINT

program 7 proc report data = SasHelp.Cars(obs = 5); column Type MPG_City MPG_Highway; define Type / display id; 1

define MPG City / display format = mpg. 2

define MPG_Highway / display noprint 4;

Туре	City Mileage
SUV	Terrible
Sedan	ОК
Sedan	ОК
Sedan	Terrible
Sedan	Terrible

run;

'City Mileage' 3;

Using ORDER with DESCENDING and FORMAT=

Туре	MPG (City)	MPG (Highway)
Sedan	Terrible	28
		24
	ОК	31
		29
SUV	Terrible	23

Using ORDER= Options

```
proc report data = SasHelp.Cars(obs = 5);
  column Type MPG_City MPG_Highway;
  define Type / order;
  define MPG_City / order format = mpg.;
  define MPG_Highway / order format = mpg.;
run;
```

Туре	MPG (City)	MPG (Highway)
SUV	Terrible	ОК
Sedan	ОК	ОК
	Terrible	ОК

Intro to ACROSS

```
proc report data = SasHelp.Cars;
  column Type;
  define Type / across ① order = freq ② descending ③ ;
run;
```

Туре					
Sedan	SUV	SUV Sports Wagon Truck		Truck	Hybrid
262	60	49	30	24	3

Intro to ANALYSIS

```
proc report data = SasHelp.Cars(obs = 5);
  column MPG_City MPG_Highway;
  define MPG_City / analysis 1;
  define MPG_Highway / analysis 1;
run;
```

MPG (City)	MPG (Highway)
101	135

Other ANALYSIS Statistics

```
proc report data = SasHelp.Cars(obs = 5);
  column MPG_City MPG_Highway;
  define MPG_City / analysis mean 1;
  define MPG_Highway / median 2;
run;
```

MPG (City)	MPG (Highway)	
20.2	28	

Understanding Analysis Groups

```
proc report data = SasHelp.Cars(obs = 5);
  column Type MPG_City MPG_Highway;
  define Type / display ①;
  define MPG_City / analysis ② mean;
  define MPG_Highway / analysis ② var;
run;
```

Туре	MPG (City)	MPG (Highway)
SUV	17	
Sedan	24	
Sedan	22	
Sedan	20	
Sedan	18	

Intro to GROUP Usage

format = 4.1
'Mean City MPG';

'Record Count';

Туре	Mean City MPG	Record Count
Sedan	21.1	262
SUV	16.1	60
Sports	18.4	49
Wagon	21.1	30
Truck	16.5	24
Hybrid	55.0	3

run;

define MPG_Highway / n

Intro to COMPUTED Usage

```
proc report data = SasHelp.Cars(obs = 5);
  column Type MPG_City MPG_Highway MPG_Ratio; 1
  define Type / display;
  define MPG_City / display;
  define MPG_Highway / display;
  define MPG_Ratio / computed 2 'City/Highway';
  compute 3 MPG_Ratio 4;
    MPG_Ratio = MPG_City/MPG_Highway; 6
  endcomp; 6
run;
```

Туре	MPG (City)	MPG (Highway)	City Highway
SUV	17	23	0.7391304
Sedan	24	31	0.7741935
Sedan	22	29	0.7586207
Sedan	20	28	0.7142857
Sedan	18	24	0.75

COMPUTED Positioning

```
proc report data = SasHelp.Cars(obs = 5)
            split = "*" ① ;
  column Type MPG_Ratio 2 MPG_City MPG_Highway;
  define Type / display ;
  define MPG City / display;
  define MPG_Highway / display;
  define MPG Ratio / computed 'City/Highway';
  compute MPG Ratio;
    MPG Ratio = MPG City/MPG Highway;
  endcomp;
run;
```

Туре	City/Highway	MPG (City)	MPG (Highway)
SUV		17	23
Sedan		24	31
Sedan		22	29
Sedan		20	28
Sedan		18	24

COMPUTED Positioning: Fixed

```
proc report data = SasHelp.Cars(obs = 5)
            split = "*";
  column Type MPG_Ratio MPG_City MPG_Highway;
  define Type / display ;
  define MPG_City / display;
  define MPG Highway / display;
  define MPG_Ratio / computed
                      'City/Highway'
                     format = 4.2:
  compute MPG Highway; 1
    MPG Ratio = MPG City/MPG Highway;
  endcomp:
run;
```

Туре	City/Highway	MPG (City)	MPG (Highway)
SUV	0.74	17	23
Sedan	0.77	24	31
Sedan	0.76	22	29
Sedan	0.71	20	28
Sedan	0.75	18	24

Summarizing Usages

Properties 2

ACROSS: New column for each formatted unique value of of the ACROSS variable.

ANALYSIS: Calculates a statistic for a group of observations from the data set.

COMPUTED: Column derived in a COMPUTE block in the PROC REPORT.

DISPLAY: Each observation of the variable is printed in its own row in the report.

GROUP: Collects observations with the same formatted value of the GROUP variable.

ORDER: Sequences the rows of the report based on sort criteria and direction.

Styling a Report on MSRP

Origin	DriveTrain	Count	%	Mean	Median
USA	All	22	15.0%	\$33,972	\$32,448
	Front	90	61.2%	\$25,095	\$23,115
	Rear	35	23.8%	\$33,301	\$30,835
		147	34.3%	\$28,377	\$25,520
Europe	All	36	29.3%	\$45,103	\$39,445
	Front	37	30.1%	\$34,980	\$34,845
	Rear	50	40.7%	\$60,581	\$52,243
		123	28.7%	\$48,350	\$40,590
Asia	All	34	21.5%	\$28,982	\$26,898
	Front	99	62.7%	\$20,687	\$19,560
	Rear	25	15.8%	\$35,028	\$31,045
		158	36.9%	\$24,741	\$23,033
		428		\$32,775	\$27,635
Mean and median differ by more than 15%					

- STYLE controls aesthetics like color, font, etc.
- Aliasing allows for multiple statistics on MSRP
- BREAK and RBREAK allow for summaries
- CALL DEFINE allows for changes within a row/column
- COMPUTE + CALL DEFINE allows for banded rows
- But none of it works without correct usages!

Summary

Usages at the heart of good REPORTing

- Many additional tools
- Additional code in paper, more advanced examples in tutorial
- Thank you and, time permitting, any questions?!